Diode circuits

Contents
• Diode models
• Typical diode circuits & applications
• Load line concepts for nonlinear load analysis
What is a diode?

Simplest view (no physics):

— a unidirectional device that allows current to flow in one direction but not the other.

Ideally, we regard a diode as short circuit when voltage applied to it in the forward manner is positive.
Ideal characteristic

Bias conditions

Forward bias: $v_d > 0$ — current can flow and $i_d > 0$.
Reverse bias: $v_d < 0$ — current cannot flow and $i_d = 0$.

Ideal diode

with finite forward drop (more realistic)

Prof. C.K. Tse: Diode circuits
Take a closer look at the characteristic around the turning point.

The i-v characteristic is an exponential function.

From physics, we have

$$i_d = I_{ss} \left(e^{\frac{q v_d}{kT}} - 1 \right)$$

Also, the diode can only stand the negative voltage up to a certain threshold V_{BD}, beyond which the diode conducts reverse current (breakdown).
Which model to use?

The choice depends on the external voltage magnitudes.

Ideal model:

1. For a voltage of 100V:
 \[i_d = \frac{100}{100} = 1 \text{ A} \]
 With 0.7V drop:
 \[i_d = \frac{(100-0.7)}{100} = 0.997 \text{ A} \]

2. For a voltage of 10V:
 \[i_d = \frac{10}{100} = 100 \text{ mA} \]
 With 0.7V drop:
 \[i_d = \frac{(10-0.7)}{100} = 93 \text{ mA} \]

3. For a voltage of 2V:
 \[i_d = \frac{2}{100} = 20 \text{ mA} \]
 With 0.7V drop:
 \[i_d = \frac{(2-0.7)}{100} = 13 \text{ mA} \]
Example: rectifier circuit

The ideal model is valid if the external voltages are well above 0.7V.

What is the magnitude of v_r?
- Crude — 50 V
- Better — $50 - 1.4 = 48.6$ V
Application examples

Prof. C.K. Tse: Diode circuits
A nonlinear circuit problem

Suppose we wish to find v_d, given that the external voltage V_s is not large enough to validate the use of the ideal diode model.
Step 1 : locating the operating points

Recall: The characteristic curve/line for a device actually defines where the point \((v, i)\) can lie.

We know

1. the operating point \((v_d, i_d)\) is somewhere on the diode characteristic curve

2. the operating point \((v_R, i_R)\) is somewhere on the resistor characteristic curve
Step 2 : KVL & KCL constraints

We also know

from KCL : \(i_d = i_R \) \hspace{1cm} \text{AND} \hspace{1cm} \text{from KVL} : \(v_d + v_R = V_s \)
Step 3: enforcing KVL & KCL

Method: flip the resistor curve horizontally; and push the two curves together horizontally until the y-axes are V_s apart.
Solution: load line

The flipped resistor line is called the LOAD LINE.
General problem

How to find v_d and i_d?
Basic load line construction

\[+ v_R - \]
\[R \]
\[+ i_d \]
\[- v_d \]
\[i \]
\[V_s \]

slope = \(-\frac{1}{R}\)

device characteristic

Prof. C.K. Tse: Diode circuits
Alternative construction

\[V_s \quad + \quad v_R \quad - \quad i_R \]

\[R \]

\[i_d \quad + \quad v_d \quad - \quad i \]

Nonlinear device

Load line

\(i_d \) when device is short-circuit

\(v_d \) when device is open-circuit

Prof. C.K. Tse: Diode circuits
Tutorial problem

Find the operating point.